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Abstract. A quantum dynamicalŘ-matrix with a spectral parameter is constructed by fusion
procedure. This spin-1̌R-matrix is connected with Lie algebraso(3) and does not satisfy the
condition of translation invariance.

1. Introduction

Since the classical dynamicalr-matrix [1] first appeared on the scene of integrable many-
body systems, many dynamicalr-matrices have been found in integrable models such as
the Calogero–Moser model [2], the sine-Gordon soliton case [3] and the general case for
the Ruijsenaars system [4]. These dynamicalr-matrices do not satisfy the ordinary classical
Yang–Baxter equation, so their quantization is rather non-trivial. The quantum dynamical
Yang–Baxter (QDYB) equation, which first appeared in the quantization of Toda field theory
[5] and later in the quantization of the KZB (Knizhnik–Zamolodchikov–Bernard) equation
[6], had been studied widely for various integrable models and its algebraic structure was
explored [7–9].

In contrast to the non-dynamical one [10], only a few dynamicalR-matrices are
constructed explicitly and most of them can be obtained from Felder’s solution [6] by
taking a gauge transformations [9]. So how to construct newR-matrix is still an interesting
and challenging problem. As an efficient method to obtain a higher-spinR-matrix, fusion
procedure [11] has been applied to the dynamicalR-matrix [12].

In this paper, we construct a spin-1 quantum dynamicalR-matrix with spectral parameter
by ‘fusing’ together the spin-12 R-matrices which satisfy the QDYB equation [7]:

R12(λ12, x + γ h(3))R13(λ13, x − γ h(2))R23(λ23, x + γ h(1))
= R23(λ23, x − γ h(1))R13(λ13, x + γ h(2))R12(λ12, x − γ h(3)). (1)

The spectral parametersλij are defined asλij = λi − λj , x =
∑

ν xνhν is the dynamical
variable andh is the Cartan subalgebra of the underlying simple Lie algebra. Taking
values in End(V1 ⊗ V2 ⊗ V3), the R-matrix appears asR12(x + γ h(3))(V1 ⊗ V2 ⊗ V3) =
(R12(x+γµ)(V1⊗V2))⊗V3 if h(3) has weightµ in spaceV3. Other symbols have a similar
meaning.
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In braid form, the QDYB equation (1) reads as

Ř23(λ12, x + γ h(1))Ř12(λ13, x − γ h(3))Ř23(λ23, x + γ h(1))
= Ř12(λ23, x − γ h(3))Ř23(λ13, x + γ h(1))Ř12(λ12, x − γ h(3)) (2)

where Řij = PijRij and Pij is the permutation operator acting on spacesVi ⊗ Vj . If
Ř-matrices satisfy the condition of translation invariance:

[D(i) +D(j), Řij (λ, x)] = 0 D(i) =
∑
ν

h(i)ν ∂xν (3)

we can rewrite equation (2) as

Ř23(λ12, x + 2γ h(1))Ř12(λ13, x)Ř23(λ23, x + 2γ h(1))

= Ř12(λ23, x)Ř23(λ13, x + 2γ h(1))Ř12(λ12, x). (4)

This paper is organized as follows. In section 2, we obtain some useful properties of
the Ř(

1
2 ,

1
2 )-matrix. In section 3, using thěR(

1
2 ,

1
2 )-matrix, we construct thěR(1,1)-matrix by

fusion procedure and prove that the new matrix also satisfies the QDYB equation. Finally,
we discuss our results and compare them with [12] in section 4.

2. Properties of the spin-12Ř-matrix

According to spin-12 chain,h(i)(⊗Vi) = diag{ 12,− 1
2}(⊗Vi), there is the simplesťR-matrix

solution with spectral parameter [7]:

Ř(
1
2 ,

1
2 )(λ, x) =


1 0 0 0
0 − sinhγ sinh(x+λ)

sinhx sinh(λ−γ )
sinhλ sinh(x+γ )
sinhx sinh(λ−γ ) 0

0 sinhλ sinh(x−γ )
sinhx sinh(λ−γ ) − sinhγ sinh(x−λ)

sinhx sinh(λ−γ ) 0
0 0 0 1

 . (5)

This Ř(
1
2 ,

1
2 )-matrix satisfies the ‘weight zero’ condition

[h(i) + h(j), Řij (λ, x)] = 0 (6)

and it has one triple eigenvalue 1 and one single eigenvalue− sinh(λ+γ )
sinh(λ−γ ) .

To the triple eigenvalue, its right-acting eigenvectors are

u(1)(x) =


1
0
0
0

 u(0)(x) = 1√
2


0
1
1
0

 u(−1)(x) =


0
0
0
1

 (7)

and its left-acting eigenvectors are

u(1)(x) = (1, 0, 0, 0)

u(0)(x) = 1√
2

(
0,

sinh(x − γ )
sinhx coshγ

,
sinh(x + γ )
sinhx coshγ

, 0

)
u(−1)(x) = (0, 0, 0, 1).

(8)

While the eigenvalue is− sinh(λ+γ )
sinh(λ−γ ) , the right-acting and left-acting eigenvectors are

v(0)(x) = 1√
2


0

sinh(x+γ )
sinhx coshγ
− sinh(x−γ )
sinhx coshγ

0

 v(0)(x) = 1√
2
(0, 1,−1, 0) (9)
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respectively.
These eigenvectors satisfy

u(a)(x)v(0)(x) = v(0)(x)u(a)(x) = 0 a = 1, 0,−1

v(0)(x)v(0)(x) = 1 u(a)(x)u(b)(x) = δab a, b = 1, 0,−1
(10)

so we can construct two projection operators for the triplet and singlet

P(x) =
∑
a

u(a)(x)u
(a)(x) Q(x) = v(0)(x)v(0)(x)

id(4×4) = P(x)+Q(x)
(11)

in which id(4×4) = diag{1, 1, 1, 1}, P(x) andQ(x) have the properties:

P 2(x) = P(x) Q2(x) = Q(x) P (x)Q(x) = Q(x)P (x) = 0

P(x)u(a)(x) = u(a)(x) u(a)(x)P (x) = u(a)(x) a = 1, 0,−1.

Now, we can rewriteŘ(
1
2 ,

1
2 )(λ, x) as

Ř(
1
2 ,

1
2 )(λ, x) = P(x)− sinh(λ+ γ )

sinh(λ− γ )Q(x).
It is obvious that

Ř(
1
2 ,

1
2 )(λ = −γ, x) = P(x). (12)

Applying this property to equation (2), we obtain

P23(x + γ h(1))Ř(
1
2 ,

1
2 )

12 (λ− γ, x − γ h(3))Ř(
1
2 ,

1
2 )

23 (λ, x + γ h(1))
= Ř(

1
2 ,

1
2 )

12 (λ, x − γ h(3))Ř(
1
2 ,

1
2 )

23 (λ− γ, x + γ h(1))P12(x − γ h(3))
Ř
( 1

2 ,
1
2 )

23 (λ, x + γ h(1))Ř(
1
2 ,

1
2 )

12 (λ− γ, x − γ h(3))P23(x + γ h(1))
= P12(x − γ h(3))Ř(

1
2 ,

1
2 )

23 (λ− γ, x + γ h(1))Ř(
1
2 ,

1
2 )

12 (λ, x − γ h(3)).

(13)

3. Construction of the spin-1Ř-matrix

In reference to fusion procedures in [11, 12], we ‘fuse’ the dynamicalŘ(1,1) matrix with a
spectral parameter as follows:

[Ř(1,1)12,34(λ, x)]
ab
cd = u(a)12 (x − γ h(3,4))u(b)34 (x + γ h(1,2))Ř

( 1
2 ,

1
2 )

23 (λ+ γ, x + γ h(1) − γ h(4))
×Ř(

1
2 ,

1
2 )

12 (λ, x − γ h(3,4))Ř(
1
2 ,

1
2 )

34 (λ, x + γ h(1,2))
×Ř(

1
2 ,

1
2 )

23 (λ− γ, x + γ h(1) − γ h(4))u12(c)(x − γ h(3,4))
×u34(d)(x + γ h(1,2))

(14)

in which a, b, c, d take values among 1, 0,−1 andh(i,j) meansh(i) + h(j), so thisŘ(1,1)

matrix is a 9× 9 matrix.
In order to prove that equation (14) also satisfies the QDYB equation, we define two

4× 4 matrices as follows:

u = (u(1), u(0), 0, u(−1)) u =


u(1)

u(0)

0
u(−1)

 .
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We then replaceu(a) andu(b) by u as well as replacingu(c) andu(d) by u in equation (14),
such thatŘ(1,1) is changed into a 16× 16 matrix, where the added seven rows and seven
columns are in fact nothing but zero. Suchu andumatrices not only keepu(x)u(x) = P(x),
P(x)u(x) = u(x) andu(x)P (x) = u(x), but also satisfy the weight zero condition too. Now
the QDYB equation becomes

Ř
(1,1)
34,56(λ12, x + γ h(1,2))Ř(1,1)12,34(λ13, x − γ h(5,6))Ř(1,1)34,56(λ23, x + γ h(1,2))

= Ř(1,1)12,34(λ23, x − γ h(5,6))Ř(1,1)34,56(λ13, x + γ h(1,2))Ř(1,1)12,34(λ12, x − γ h(5,6)). (15)

For simplicity, we introduceŘij (λ) := Ř
( 1

2 ,
1
2 )

ij (λ, x + γ ∑i−1
k=1 h

(k) − γ ∑6
l=j+1 h

(l)), and

replaceuij (x + γ
∑i−1

k=1 h
(k) − γ ∑6

l=j+1 h
(l)) anduij (x + γ

∑i−1
k=1 h

(k) − γ ∑6
l=j+1 h

(l)) by
uij anduij respectively. After these notations, the weight zero condition means

[Aii+1(λ), Bjj+1(λ
′)] = 0 if i + 1< j or j + 1< i (16)

in which A,B ∈ {Ř,u,u}. By the relation (13) and its analogue, we can reduce equation
(15) to

l.h.s.= u12u34u56S34(λ12)S12(λ13)S34(λ23)u12u34u56

r.h.s.= u12u34u56S12(λ23)S34(λ13)S12(λ12)u12u34u56

Sii+1(λ) = (Ři+1i+2(λ− γ )Řii+1(λ)Ři+2i+3(λ)Ři+1i+2(λ+ γ )).
Using the QDYB equation (2) and its analogue, we have provedS34(λ12)S12(λ13)S34(λ23) =
S12(λ23)S34(λ13)S12(λ12), or l.h.s. = r.h.s. in the above equation. In other words, the fusion
procedure is practicable.

If we rewrite equation (15) in the standard 9× 9 matrix form Ř
(1,1)
IJ (λ, x), it becomes

Ř
(1,1)
JK (λ12, x + γ h(I))Ř(1,1)IJ (λ13, x − γ h(K))Ř(1,1)JK (λ23, x + γ h(I)) (17)

= Ř(1,1)IJ (λ23, x − γ h(K))Ř(1,1)JK (λ13, x + γ h(I))Ř(1,1)IJ (λ12, x − γ h(K)). (18)

It is simply the original QDYB equation (2). Notice that thišR(1,1) matrix is of spin-1 since
h(l)(⊗Vl) (in which l ∈ {I, J,K}) becomes diag{1, 0,−1}(⊗Vl) by taking the singlet of
spin-0 away.

With the Ř(
1
2 ,

1
2 )-matrix (5) and the fusion method (14), we obtain

Ř(1,1)(λ, x) =



1 0 0 0 0 0 0 0 0
0 a(λ, x) 0 b(λ,−x) 0 0 0 0 0
0 0 c(λ, x) 0 d(λ, x) 0 e(λ, x) 0 0
0 b(λ, x) 0 a(λ,−x) 0 0 0 0 0
0 0 f (λ, x) 0 g(λ, x) 0 f (λ,−x) 0 0
0 0 0 0 0 a(λ, x) 0 b(λ,−x) 0
0 0 e(λ,−x) 0 d(λ,−x) 0 c(λ,−x) 0 0
0 0 0 0 0 b(λ, x) 0 a(λ,−x) 0
0 0 0 0 0 0 0 0 1


(19)

in which

a(λ, x) = sinh(2γ ) sinh(λ+ x)
sinh(2γ − λ) sinhx

b(λ, x) = sinh(λ) sinh(2γ − x)
sinh(2γ − λ) sinhx

c(λ, x) = sinhγ sinh(2γ ) sinh(λ+ x) sinh(γ + λ+ x)
sinh(γ − λ) sinh(2γ − λ) sinhx sinh(γ + x)

d(λ, x) = sinh(2γ ) sinh(λ) sinh(2γ + x) sinh(λ+ x) coshγ

sinh(γ − λ) sinh(2γ − λ) sinh(γ − x) sinh(γ + x)
e(λ, x) = −sinhλ sinh(γ + λ) sinh(γ + x) sinh(2γ + x)

sinh(γ − λ) sinh(2γ − λ) sinh(γ − x) sinhx
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f (λ, x) = 2 sinhγ sinhλ sinh(γ − x) sinh(λ+ x)
sinh(γ − λ) sinh(2γ − λ) sinhx sinh(γ + x)

g(λ, x) = sinh(γ + λ)
sinh(γ − λ) +

sinhλ(cosh(2x)− cosh(2γ )− sinh2(2γ ))

sinh(2γ − λ) sinh(γ − x) sinh(γ + x) .

The obtainedŘ(1,1)-matrix has three distinct eigenvalues, say, 1,− sinh(λ+2γ )
sinh(λ−2γ ) and

sinh(λ+γ ) sinh(λ+2γ )
sinh(λ−γ ) sinh(λ−2γ ) whose multiplicities are 5, 3 and 1 respectively. ThisŘ(1,1) is connected
with Lie algebraso(3). By direct calculation, we can show that it does satisfy the QDYB
equation (17) withh(l)(⊗Vl) = diag{1, 0,−1}(⊗Vl).

4. Discussion

From expression (18), we find that thěR(1,1)-matrix does not satisfy the translation
invariance condition (3). In other words, if we want to translate it to the form of equation
(4), we will obtain a more complex̌R(1,1)-matrix form. In fact, it is just the matrix of
Ř
(1,1)
IJ (λ, x+γ h(I,J )) whereh(I,J ) meansh(I)+h(J ), so we have to construct new commuting

operators different from those in [7], in which condition(3) was used in constructing
commuting operators. For simplicity of the expression of theR-matrix, we had better use
a more symmetric form as in equation (1) or (2), rather than the form as in equation (4).

We now compare our results with [12]. First, the QDYB equation (4) tends to be
independent of the spectral parameter by requiringλ → ±∞. Secondly, we need to
change the dynamical variablex → −γ x in our Ř(

1
2 ,

1
2 )- and Ř(1,1)-matrices because the

QDYB equation takes different forms in these two papers. Finally, we need to translate
expression (18) toŘ(1,1)IJ (λ, x + γ h(I,J )) as discussed before. After these changes ofλ and
x in Ř(1,1)IJ (λ, x + γ h(I,J )), we indeed obtain thěR(1,1)-matrix gauge equivalent to the one
in [12]. The single eigenvalueq of the Ř(

1
2 ,

1
2 )-matrix in [12] is connected to e±2γ when we

takeλ→±∞, respectively.
For the six-vertex elliptic solution of the QDYB equation, eigenvalues of theŘ(

1
2 ,

1
2 )-

matrix are not made of one triplet and one singlet. It is still an open problem concerning
how to construct its higher-spiňR-matrix.
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