Quantum dynamical $\check{\boldsymbol{R}}$-matrix with spectral parameter from fusion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 318533
(http://iopscience.iop.org/0305-4470/31/42/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:17

Please note that terms and conditions apply.

Quantum dynamical \check{R}-matrix with spectral parameter from fusion

Xu-Dong Luo \dagger, Xing-Chang Song $\dagger \ddagger$, Shi-Kun Wang§ and Ke Wu \dagger
\dagger Institute of Theoretical Physics, Academia Sinica, Beijing 100080, People's Republic of China \ddagger Department of Physics, Peking University, Beijing 100871, People’s Republic of China \S CCAST (World Laboratory), Beijing 100080, People's Republic of China
and Institute of Applied Mathematics, Academia Sinica, Beijing 100080, People's Republic of China

Received 8 June 1998

Abstract

A quantum dynamical \check{R}-matrix with a spectral parameter is constructed by fusion procedure. This spin-1 \check{R}-matrix is connected with Lie algebra $\operatorname{so}(3)$ and does not satisfy the condition of translation invariance.

1. Introduction

Since the classical dynamical r-matrix [1] first appeared on the scene of integrable manybody systems, many dynamical r-matrices have been found in integrable models such as the Calogero-Moser model [2], the sine-Gordon soliton case [3] and the general case for the Ruijsenaars system [4]. These dynamical r-matrices do not satisfy the ordinary classical Yang-Baxter equation, so their quantization is rather non-trivial. The quantum dynamical Yang-Baxter (QDYB) equation, which first appeared in the quantization of Toda field theory [5] and later in the quantization of the KZB (Knizhnik-Zamolodchikov-Bernard) equation [6], had been studied widely for various integrable models and its algebraic structure was explored [7-9].

In contrast to the non-dynamical one [10], only a few dynamical R-matrices are constructed explicitly and most of them can be obtained from Felder's solution [6] by taking a gauge transformations [9]. So how to construct new R-matrix is still an interesting and challenging problem. As an efficient method to obtain a higher-spin R-matrix, fusion procedure [11] has been applied to the dynamical R-matrix [12].

In this paper, we construct a spin-1 quantum dynamical R-matrix with spectral parameter by 'fusing' together the spin- $\frac{1}{2} R$-matrices which satisfy the QDYB equation [7]:

$$
\begin{align*}
& R_{12}\left(\lambda_{12}, x+\gamma h^{(3)}\right) R_{13}\left(\lambda_{13}, x-\gamma h^{(2)}\right) R_{23}\left(\lambda_{23}, x+\gamma h^{(1)}\right) \\
& \quad=R_{23}\left(\lambda_{23}, x-\gamma h^{(1)}\right) R_{13}\left(\lambda_{13}, x+\gamma h^{(2)}\right) R_{12}\left(\lambda_{12}, x-\gamma h^{(3)}\right) \tag{1}
\end{align*}
$$

The spectral parameters $\lambda_{i j}$ are defined as $\lambda_{i j}=\lambda_{i}-\lambda_{j}, x=\sum_{v} x_{v} h_{v}$ is the dynamical variable and h is the Cartan subalgebra of the underlying simple Lie algebra. Taking values in $\operatorname{End}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)$, the R-matrix appears as $R_{12}\left(x+\gamma h^{(3)}\right)\left(V_{1} \otimes V_{2} \otimes V_{3}\right)=$ $\left(R_{12}(x+\gamma \mu)\left(V_{1} \otimes V_{2}\right)\right) \otimes V_{3}$ if $h^{(3)}$ has weight μ in space V_{3}. Other symbols have a similar meaning.

In braid form, the QDYB equation (1) reads as

$$
\begin{align*}
\check{R}_{23}\left(\lambda_{12}, x+\right. & \left.\gamma h^{(1)}\right) \check{R}_{12}\left(\lambda_{13}, x-\gamma h^{(3)}\right) \check{R}_{23}\left(\lambda_{23}, x+\gamma h^{(1)}\right) \\
& =\check{R}_{12}\left(\lambda_{23}, x-\gamma h^{(3)}\right) \check{R}_{23}\left(\lambda_{13}, x+\gamma h^{(1)}\right) \check{R}_{12}\left(\lambda_{12}, x-\gamma h^{(3)}\right) \tag{2}
\end{align*}
$$

where $\check{R}_{i j}=P_{i j} R_{i j}$ and $P_{i j}$ is the permutation operator acting on spaces $V_{i} \otimes V_{j}$. If \check{R}-matrices satisfy the condition of translation invariance:

$$
\begin{equation*}
\left[\mathcal{D}^{(i)}+\mathcal{D}^{(j)}, \check{R}_{i j}(\lambda, x)\right]=0 \quad \mathcal{D}^{(i)}=\sum_{v} h_{v}^{(i)} \partial_{x_{v}} \tag{3}
\end{equation*}
$$

we can rewrite equation (2) as

$$
\begin{align*}
& \check{R}_{23}\left(\lambda_{12}, x+2 \gamma h^{(1)}\right) \check{R}_{12}\left(\lambda_{13}, x\right) \check{R}_{23}\left(\lambda_{23}, x+2 \gamma h^{(1)}\right) \\
& \quad=\check{R}_{12}\left(\lambda_{23}, x\right) \check{R}_{23}\left(\lambda_{13}, x+2 \gamma h^{(1)}\right) \check{R}_{12}\left(\lambda_{12}, x\right) \tag{4}
\end{align*}
$$

This paper is organized as follows. In section 2, we obtain some useful properties of the $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$-matrix. In section 3, using the $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$-matrix, we construct the $\check{R}^{(1,1)}$-matrix by fusion procedure and prove that the new matrix also satisfies the QDYB equation. Finally, we discuss our results and compare them with [12] in section 4.

2. Properties of the spin- $\frac{1}{2} \check{R}$-matrix

According to spin- $\frac{1}{2}$ chain, $h^{(i)}\left(\otimes V_{i}\right)=\operatorname{diag}\left\{\frac{1}{2},-\frac{1}{2}\right\}\left(\otimes V_{i}\right)$, there is the simplest \check{R}-matrix solution with spectral parameter [7]:

$$
\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(\lambda, x)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{5}\\
0 & -\frac{\sinh \gamma \sinh (x+\lambda)}{\sinh x \sinh (\lambda-\gamma)} & \frac{\sinh \lambda \sinh (x+\gamma)}{\sinh x \sinh (\lambda-\gamma)} & 0 \\
0 & \frac{\sinh \lambda \sinh (x-\gamma)}{\sinh x \sinh (\lambda-\gamma)} & -\frac{\sinh \gamma \sinh (x-\lambda)}{\sinh x \sinh (\lambda-\gamma)} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

This $\check{R}\left(\frac{1}{2}, \frac{1}{2}\right)$-matrix satisfies the 'weight zero' condition

$$
\begin{equation*}
\left[h^{(i)}+h^{(j)}, \check{R}_{i j}(\lambda, x)\right]=0 \tag{6}
\end{equation*}
$$

and it has one triple eigenvalue 1 and one single eigenvalue $-\frac{\sinh (\lambda+\gamma)}{\sinh (\lambda-\gamma)}$.
To the triple eigenvalue, its right-acting eigenvectors are

$$
u_{(1)}(x)=\left(\begin{array}{c}
1 \tag{7}\\
0 \\
0 \\
0
\end{array}\right) \quad u_{(0)}(x)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right) \quad u_{(-1)}(x)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and its left-acting eigenvectors are

$$
\begin{align*}
& \bar{u}^{(1)}(x)=(1,0,0,0) \\
& \bar{u}^{(0)}(x)=\frac{1}{\sqrt{2}}\left(0, \frac{\sinh (x-\gamma)}{\sinh x \cosh \gamma}, \frac{\sinh (x+\gamma)}{\sinh x \cosh \gamma}, 0\right) \tag{8}\\
& \bar{u}^{(-1)}(x)=(0,0,0,1)
\end{align*}
$$

While the eigenvalue is $-\frac{\sinh (\lambda+\gamma)}{\sinh (\lambda-\gamma)}$, the right-acting and left-acting eigenvectors are

$$
v_{(0)}(x)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \tag{9}\\
\frac{\sinh (x+\gamma)}{\sinh x \cosh \gamma} \\
\frac{-\sinh (x-\gamma)}{\sinh x \cosh \gamma} \\
0
\end{array}\right) \quad \bar{v}^{(0)}(x)=\frac{1}{\sqrt{2}}(0,1,-1,0)
$$

respectively.
These eigenvectors satisfy

$$
\begin{align*}
& \bar{u}^{(a)}(x) v_{(0)}(x)=\bar{v}^{(0)}(x) u_{(a)}(x)=0 \quad a=1,0,-1 \\
& \bar{v}^{(0)}(x) v_{(0)}(x)=1 \quad \bar{u}^{(a)}(x) u_{(b)}(x)=\delta_{b}^{a} \quad a, b=1,0,-1 \tag{10}
\end{align*}
$$

so we can construct two projection operators for the triplet and singlet

$$
\begin{align*}
& P(x)=\sum_{a} u_{(a)}(x) \bar{u}^{(a)}(x) \quad Q(x)=v_{(0)}(x) \bar{v}^{(0)}(x) \tag{11}\\
& \operatorname{id}_{(4 \times 4)}=P(x)+Q(x)
\end{align*}
$$

in which $\operatorname{id}_{(4 \times 4)}=\operatorname{diag}\{1,1,1,1\}, P(x)$ and $Q(x)$ have the properties:

$$
\begin{aligned}
& P^{2}(x)=P(x) \quad Q^{2}(x)=Q(x) \quad P(x) Q(x)=Q(x) P(x)=0 \\
& P(x) u_{(a)}(x)=u_{(a)}(x) \quad \bar{u}^{(a)}(x) P(x)=\bar{u}^{(a)}(x) \quad a=1,0,-1
\end{aligned}
$$

Now, we can rewrite $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(\lambda, x)$ as

$$
\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(\lambda, x)=P(x)-\frac{\sinh (\lambda+\gamma)}{\sinh (\lambda-\gamma)} Q(x) .
$$

It is obvious that

$$
\begin{equation*}
\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(\lambda=-\gamma, x)=P(x) \tag{12}
\end{equation*}
$$

Applying this property to equation (2), we obtain

$$
\begin{align*}
& P_{23}\left(x+\gamma h^{(1)}\right) \check{R}_{12}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda-\gamma, x-\gamma h^{(3)}\right) \check{R}_{23}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda, x+\gamma h^{(1)}\right) \\
& \quad=\check{R}_{12}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda, x-\gamma h^{(3)}\right) \check{R}_{23}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda-\gamma, x+\gamma h^{(1)}\right) P_{12}\left(x-\gamma h^{(3)}\right) \tag{13}\\
& \check{R}_{23}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(\lambda, x+ \\
& \left.\quad \gamma h^{(1)}\right) \check{R}_{12}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda-\gamma, x-\gamma h^{(3)}\right) P_{23}\left(x+\gamma h^{(1)}\right) \\
& \quad=P_{12}\left(x-\gamma h^{(3)}\right) \check{R}_{23}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda-\gamma, x+\gamma h^{(1)}\right) \check{R}_{12}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda, x-\gamma h^{(3)}\right) .
\end{align*}
$$

3. Construction of the spin- $1 \check{R}$-matrix

In reference to fusion procedures in [11, 12], we 'fuse' the dynamical $\check{R}^{(1,1)}$ matrix with a spectral parameter as follows:

$$
\begin{align*}
{\left[\check{R}_{12,34}^{(1,1)}(\lambda, x)\right]_{c d}^{a b} } & =\bar{u}_{12}^{(a)}\left(x-\gamma h^{(3,4)}\right) \bar{u}_{34}^{(b)}\left(x+\gamma h^{(1,2)}\right) \check{R}_{23}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda+\gamma, x+\gamma h^{(1)}-\gamma h^{(4)}\right) \\
& \times \check{R}_{12}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda, x-\gamma h^{(3,4)}\right) \check{R}_{34}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda, x+\gamma h^{(1,2)}\right) \\
& \times \check{R}_{23}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda-\gamma, x+\gamma h^{(1)}-\gamma h^{(4)}\right) u_{12(c)}\left(x-\gamma h^{(3,4)}\right) \\
& \times u_{34(d)}\left(x+\gamma h^{(1,2)}\right) \tag{14}
\end{align*}
$$

in which a, b, c, d take values among $1,0,-1$ and $h^{(i, j)}$ means $h^{(i)}+h^{(j)}$, so this $\check{R}^{(1,1)}$ matrix is a 9×9 matrix.

In order to prove that equation (14) also satisfies the QDYB equation, we define two 4×4 matrices as follows:

$$
u=\left(u_{(1)}, u_{(0)}, 0, u_{(-1)}\right) \quad \bar{u}=\left(\begin{array}{c}
\bar{u}^{(1)} \\
\bar{u}^{(0)} \\
0 \\
\bar{u}^{(-1)}
\end{array}\right)
$$

We then replace $\bar{u}^{(a)}$ and $\bar{u}^{(b)}$ by \bar{u} as well as replacing $u_{(c)}$ and $u_{(d)}$ by u in equation (14), such that $\check{R}^{(1,1)}$ is changed into a 16×16 matrix, where the added seven rows and seven columns are in fact nothing but zero. Such u and \bar{u} matrices not only keep $u(x) \bar{u}(x)=P(x)$, $P(x) u(x)=u(x)$ and $\bar{u}(x) P(x)=\bar{u}(x)$, but also satisfy the weight zero condition too. Now the QDYB equation becomes

$$
\begin{align*}
\check{R}_{34,56}^{(1,1)}\left(\lambda_{12}, x\right. & \left.+\gamma h^{(1,2)}\right) \check{R}_{12,34}^{(1,1)}\left(\lambda_{13}, x-\gamma h^{(5,6)}\right) \check{R}_{34,56}^{(1,1)}\left(\lambda_{23}, x+\gamma h^{(1,2)}\right) \\
& =\check{R}_{12,34}^{(1,1)}\left(\lambda_{23}, x-\gamma h^{(5,6)}\right) \check{R}_{34,56}^{(1,1)}\left(\lambda_{13}, x+\gamma h^{(1,2)}\right) \check{R}_{12,34}^{(1,1)}\left(\lambda_{12}, x-\gamma h^{(5,6)}\right) \tag{15}
\end{align*}
$$

For simplicity, we introduce $\check{\mathcal{R}}_{i j}(\lambda):=\check{R}_{i j}^{\left(\frac{1}{2}, \frac{1}{2}\right)}\left(\lambda, x+\gamma \sum_{k=1}^{i-1} h^{(k)}-\gamma \sum_{l=j+1}^{6} h^{(l)}\right)$, and replace $u_{i j}\left(x+\gamma \sum_{k=1}^{i-1} h^{(k)}-\gamma \sum_{l=j+1}^{6} h^{(l)}\right)$ and $\bar{u}_{i j}\left(x+\gamma \sum_{k=1}^{i-1} h^{(k)}-\gamma \sum_{l=j+1}^{6} h^{(l)}\right)$ by $\Pi_{i j}$ and $\bar{\Pi}_{i j}$ respectively. After these notations, the weight zero condition means

$$
\begin{equation*}
\left[A_{i i+1}(\lambda), B_{j j+1}\left(\lambda^{\prime}\right)\right]=0 \quad \text { if } i+1<j \text { or } j+1<i \tag{16}
\end{equation*}
$$

in which $A, B \in\{\check{\mathcal{R}}, \sqcap, \bar{\Pi}\}$. By the relation (13) and its analogue, we can reduce equation (15) to

$$
\begin{aligned}
& \text { 1.h.s. }=\bar{\Pi}_{12} \Pi_{34} \bar{\Pi}_{56} S_{34}\left(\lambda_{12}\right) S_{12}\left(\lambda_{13}\right) S_{34}\left(\lambda_{23}\right) \Pi_{12} \sqcap_{34} \sqcap_{56} \\
& \text { r.h.s. }=\bar{\Pi}_{12} \bar{\Pi}_{34} \bar{\Pi}_{56} S_{12}\left(\lambda_{23}\right) S_{34}\left(\lambda_{13}\right) S_{12}\left(\lambda_{12}\right) \Pi_{12} \sqcap_{34} \Pi_{56} \\
& S_{i i+1}(\lambda)=\left(\check{\mathcal{R}}_{i+1 i+2}(\lambda-\gamma) \check{\mathcal{R}}_{i i+1}(\lambda) \check{\mathcal{R}}_{i+2 i+3}(\lambda) \check{\mathcal{R}}_{i+1 i+2}(\lambda+\gamma)\right) .
\end{aligned}
$$

Using the QDYB equation (2) and its analogue, we have proved $S_{34}\left(\lambda_{12}\right) S_{12}\left(\lambda_{13}\right) S_{34}\left(\lambda_{23}\right)=$ $S_{12}\left(\lambda_{23}\right) S_{34}\left(\lambda_{13}\right) S_{12}\left(\lambda_{12}\right)$, or l.h.s. $=$ r.h.s. in the above equation. In other words, the fusion procedure is practicable.

If we rewrite equation (15) in the standard 9×9 matrix form $\check{R}_{I J}^{(1,1)}(\lambda, x)$, it becomes

$$
\begin{align*}
\check{R}_{J K}^{(1,1)}\left(\lambda_{12}, x\right. & \left.+\gamma h^{(I)}\right) \check{R}_{I J}^{(1,1)}\left(\lambda_{13}, x-\gamma h^{(K)}\right) \check{R}_{J K}^{(1,1)}\left(\lambda_{23}, x+\gamma h^{(I)}\right) \tag{17}\\
& =\check{R}_{I J}^{(1,1)}\left(\lambda_{23}, x-\gamma h^{(K)}\right) \check{R}_{J K}^{(1,1)}\left(\lambda_{13}, x+\gamma h^{(I)}\right) \check{R}_{I J}^{(1,1)}\left(\lambda_{12}, x-\gamma h^{(K)}\right) . \tag{18}
\end{align*}
$$

It is simply the original QDYB equation (2). Notice that this $\check{R}^{(1,1)}$ matrix is of spin-1 since $h^{(l)}\left(\otimes V_{l}\right)$ (in which $\left.l \in\{I, J, K\}\right)$ becomes $\operatorname{diag}\{1,0,-1\}\left(\otimes V_{l}\right)$ by taking the singlet of spin-0 away.

With the $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$-matrix (5) and the fusion method (14), we obtain

$$
\check{R}^{(1,1)}(\lambda, x)=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{19}\\
0 & a(\lambda, x) & 0 & b(\lambda,-x) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & c(\lambda, x) & 0 & d(\lambda, x) & 0 & e(\lambda, x) & 0 & 0 \\
0 & b(\lambda, x) & 0 & a(\lambda,-x) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & f(\lambda, x) & 0 & g(\lambda, x) & 0 & f(\lambda,-x) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a(\lambda, x) & 0 & b(\lambda,-x) & 0 \\
0 & 0 & e(\lambda,-x) & 0 & d(\lambda,-x) & 0 & c(\lambda,-x) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & b(\lambda, x) & 0 & a(\lambda,-x) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

in which

$$
\begin{aligned}
& a(\lambda, x)=\frac{\sinh (2 \gamma) \sinh (\lambda+x)}{\sinh (2 \gamma-\lambda) \sinh x} \quad b(\lambda, x)=\frac{\sinh (\lambda) \sinh (2 \gamma-x)}{\sinh (2 \gamma-\lambda) \sinh x} \\
& c(\lambda, x)=\frac{\sinh \gamma \sinh (2 \gamma) \sinh (\lambda+x) \sinh (\gamma+\lambda+x)}{\sinh (\gamma-\lambda) \sinh (2 \gamma-\lambda) \sinh x \sinh (\gamma+x)} \\
& d(\lambda, x)=\frac{\sinh (2 \gamma) \sinh (\lambda) \sinh (2 \gamma+x) \sinh (\lambda+x) \cosh \gamma}{\sinh (\gamma-\lambda) \sinh (2 \gamma-\lambda) \sinh (\gamma-x) \sinh (\gamma+x)} \\
& e(\lambda, x)=-\frac{\sinh \lambda \sinh (\gamma+\lambda) \sinh (\gamma+x) \sinh (2 \gamma+x)}{\sinh (\gamma-\lambda) \sinh (2 \gamma-\lambda) \sinh (\gamma-x) \sinh x}
\end{aligned}
$$

$$
\begin{aligned}
& f(\lambda, x)=\frac{2 \sinh \gamma \sinh \lambda \sinh (\gamma-x) \sinh (\lambda+x)}{\sinh (\gamma-\lambda) \sinh (2 \gamma-\lambda) \sinh x \sinh (\gamma+x)} \\
& g(\lambda, x)=\frac{\sinh (\gamma+\lambda)}{\sinh (\gamma-\lambda)}+\frac{\sinh \lambda\left(\cosh (2 x)-\cosh (2 \gamma)-\sinh ^{2}(2 \gamma)\right)}{\sinh (2 \gamma-\lambda) \sinh (\gamma-x) \sinh (\gamma+x)}
\end{aligned}
$$

The obtained $\check{R}^{(1,1)}$-matrix has three distinct eigenvalues, say, $1,-\frac{\sinh (\lambda+2 \gamma)}{\sinh (\lambda-2 \gamma)}$ and $\frac{\sinh (\lambda+\gamma) \sinh (\lambda+2 \gamma)}{\sinh (\lambda-\gamma) \sinh (\lambda-2 \gamma)}$ whose multiplicities are 5,3 and 1 respectively. This $\check{R}^{(1,1)}$ is connected with Lie algebra $\operatorname{so}(3)$. By direct calculation, we can show that it does satisfy the QDYB equation (17) with $h^{(l)}\left(\otimes V_{l}\right)=\operatorname{diag}\{1,0,-1\}\left(\otimes V_{l}\right)$.

4. Discussion

From expression (18), we find that the $\check{R}^{(1,1)}$-matrix does not satisfy the translation invariance condition (3). In other words, if we want to translate it to the form of equation (4), we will obtain a more complex $\check{R}^{(1,1)}$-matrix form. In fact, it is just the matrix of $\check{R}_{I J}^{(1,1)}\left(\lambda, x+\gamma h^{(I, J)}\right)$ where $h^{(I, J)}$ means $h^{(I)}+h^{(J)}$, so we have to construct new commuting operators different from those in [7], in which condition (3) was used in constructing commuting operators. For simplicity of the expression of the R-matrix, we had better use a more symmetric form as in equation (1) or (2), rather than the form as in equation (4).

We now compare our results with [12]. First, the QDYB equation (4) tends to be independent of the spectral parameter by requiring $\lambda \rightarrow \pm \infty$. Secondly, we need to change the dynamical variable $x \rightarrow-\gamma x$ in our $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$ - and $\check{R}^{(1,1)}$-matrices because the QDYB equation takes different forms in these two papers. Finally, we need to translate expression (18) to $\check{R}_{I J}^{(1,1)}\left(\lambda, x+\gamma h^{(I, J)}\right)$ as discussed before. After these changes of λ and x in $\check{R}_{I J}^{(1,1)}\left(\lambda, x+\gamma h^{(I, J)}\right)$, we indeed obtain the $\check{R}^{(1,1)}$-matrix gauge equivalent to the one in [12]. The single eigenvalue q of the $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$-matrix in [12] is connected to $\mathrm{e}^{ \pm 2 \gamma}$ when we take $\lambda \rightarrow \pm \infty$, respectively.

For the six-vertex elliptic solution of the QDYB equation, eigenvalues of the $\check{R}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$ matrix are not made of one triplet and one singlet. It is still an open problem concerning how to construct its higher-spin \check{R}-matrix.

Acknowledgments

XDL would like to thank C Xiong for useful discussions. This work was supported by the Scientific Project of the Department of Science and Technology in China, the Natural Scientific Foundation of the Chinese Academy of Sciences, the Doctoral Programme of the Foundation Institution of Higher Education and the Foundation of NSF of China.

References

[1] Avan J and Talon M 1993 Phys. Lett. B 30333
[2] Sklyanin E K 1994 Alg. Anal 6227 (hep-th/9308060) Braden H W and Suzuki T 1994 Lett. Math. Phys. 30147 Billey E, Avan J and Babelon O 1994 Phys. Lett. A 186114
[3] Babelon O and Bernard D 1993 Phys. Lett. B 317363
[4] Avan J and Rollet G 1995 The classical r-matrix for the relativistic Ruijsenaars-Schneider system Preprint Browm HET 1014, hep-th/9510166 Suris Y B 1997 Phys. Lett. A 225253
[5] Gervais J L and Neveu A 1984 Nucl. Phys. B 238125
[6] Felder G 1994 Conformal field theory and integrable systems associated to elliptic curve (Proc. ICM94, Birkhauser) Preprint hep-th/9407154
Felder G 1994 Elliptic quantum groups Proc. ICMP (Paris), hep-th/9412207
[7] Avan J, Babelon O and Billey E 1996 Commun. Math. Phys. 178281
[8] Arnaudon D, Buffenoir E, Ragoucy E and Roche Ph 1998 Lett. Math. Phys. 44201
Babelon O, Bernard D and Billy E 1996 Phys. Lett. B 37589
Felder G, Tarasov V and Varchenko A 1996 Solutions of the elliptic qKZB equations and Bethe ansatz I Preprint q-alg/9606005
[9] Etingof P and Varchenko A 1997 Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups Preprint q-alg/9708015
Arutyunov G E and Frolov S A 1998 Commun. Math. Phys. 19115
[10] Ma Z Q 1993 Yang-Baxter Equation and Quantum Enveloping Algebras (Singapore: World Scientific) p 1 Sun X D, Wang S K and Wu K 1995 J. Math. Phys. 366043
Wang S K 1996 J. Phys. A: Math. Gen. 292259
[11] Kulish P P and Sklyanin E K 1982 (Lecture Notes in Physics 151) (New York: Springer) p 61
Kulish P P, Reshetikhin N Y and Sklyanin E K 1981 Lett. Math. Phys. 5393
Mezincescu L and Nepomechie R I 1991 Quantum groups Proc. Argenne Workshop (Singapore: World Scientific) p 206
[12] Song X C 1998 Quantum dynamical R-matrix from fusion Commun. Theor. Phys. 30157

